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Abstract
A two-parameter quantum deformation of the affine Lie superalgebra
osp(2|2)(2) is introduced and studied in some detail. This algebra is the
first example associated with nonsimply laced and twisted root systems of a
quantum current algebra with the structure of a so-called infinite Hopf family
of (super)algebras. A representation of this algebra at c = 1 is realized in the
product Fock space of two commuting sets of Heisenberg algebras.

PACS numbers: 02.20.-a, 05.30.Jp, 11.30.-j

1. Introduction

The study of two-parameter deformations of affine Lie (super)algebras has turned out to be
quite fruitful in the last few years. These algebras are, in a sense, deformations of the standard
quantum affine algebras or Yangian doubles, which all have the structure of quasi-triangular
Hopf algebras. In contrast, the two-parameter deformations are not Hopf algebras, but rather
have twisted Hopf structures, one of which is the Drinfeld twist of Hopf algebras or quasi-Hopf
algebras, while the other is the infinite Hopf family of (super)algebras. So far, the relationship
between the two generalized co-structures remains ill-understood.

From the physical point of view, the above two classes of two-parameter deformations
appear in different contexts. Quasi-Hopf algebras [1] occur in the study of symmetries
of face- and vertex-type models of statistical mechanics [6], and are closely related to
the face-type Boltzmann weights (Yang–Baxter R matrix), while infinite Hopf families of
(super)algebras [4, 5] occur only in the representation theory of quantum deformed Virasoro
and W algebras [2] (and act as the algebra of screening currents [3, 4]), which in turn are
algebras characterizing the dynamical symmetries of certain massive integrable quantum field
theories [7].
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Despite the great deal of work that has been done on these two-parameter deformations,
many problems remain unsolved. In particular, for the second class of two-parameter
deformations (the infinite Hopf families) nothing has been said concerning root systems of
nonsimply laced and/or twisted types. For super root systems, the only case which has been
considered is the case of osp(1|2)(1) [10]. In this paper, therefore, we aim to provide more
concrete examples of this kind, and in particular the trigonometric two-parameter deformation
of osp(2|2)(2). This algebra is based on a root system which is simultaneously non-simply
laced, twisted and super. From the known relationship between two-parameter deformations
of other affine Lie (super)algebras we expect that the algebra we study in this paper should
be interesting in the same way: it should correspond to the algebra of screening currents of
quantum deformed N = 2 superconformal algebra (if the latter exists).

2. Definition and structure of the algebra Ah̄,η(osp(2|2)(2))

2.1. Definition of A h̄,η(osp(2|2)(2))
We start with the definition of the algebra A h̄,η(osp(2|2)(2)). The notation follows that of
A h̄,η(ĝ) [4, 5, 7] and A h̄,η(osp(1|2)(1)) [10].

Definition 2.1. The algebra A h̄,η(osp(2|2)(2)), considered as a continuously distributed
current (super)algebra, is a Z2 graded associative algebra over C generated by the currents
E(u), F(u), H±(u), the central element c and unit 1 with parities π [E(u)] = π [F(u)] = 1,
π [H±(u)] = π [c] = π [1] = 0 and generating elations

E(u)E(v) = − cosh[πη(u − v + ih̄)]

cosh[πη(u − v − ih̄)]
E(v)E(u) (1)

F(u)F (v) = −cosh[πη′(u − v − ih̄)]

cosh[πη′(u − v + ih̄)]
F(v)F (u) (2)

H±(u)E(v) = cosh[πη(u − v + ih̄ ± ih̄c/4)]

cosh[πη(u − v − ih̄ ± ih̄c/4)]
E(v)H±(u) (3)

H±(u)F (v) = cosh[πη′(u − v − ih̄ ∓ ih̄c/4)]

cosh[πη′(u − v + ih̄ ∓ ih̄c/4)]
F(v)H±(u) (4)

H±(u)H±(v) = cosh[πη(u − v + ih̄)]

cosh[πη(u − v − ih̄)]

cosh[πη′(u − v − ih̄)]

cosh[πη′(u − v + ih̄)]
H±(v)H±(u) (5)

H +(u)H−(v) = cosh[πη(u − v + ih̄ + ih̄c/2)]

cosh[πη(u − v − ih̄ + ih̄c/2)]

cosh[πη′(u − v − ih̄ − ih̄c/2)]

cosh[πη′(u − v + ih̄ − ih̄c/2)]
H−(v)H +(u)

(6)

{E(u), F (v)} = 2π

h̄

[
δ(u − v − ih̄c/2)H +(u − ih̄c/4) − δ(u − v + ih̄c/2)H−(v − ih̄c/4)

]
(7)

where

1

η′ − 1

η
= h̄c

and h̄ and η are generic deformation parameters.

For later reference, we denote the subalgebras generated respectively by the currents
{E(u)} and {F(u)} as N±[Ah̄,η(osp(2|2)(2))].
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It is interesting to compare the generating relations of the algebra A h̄,η(osp(2|2)(2)) and
those of the quantum affine (super)algebra Uq(osp(2|2)(2)). The latter has the generating
relations [9]

X+(z)X+(w) = −zq + w

z + wq
X+(w)X+(z) (8)

X−(z)X−(w) = −z + wq

zq + w
X−(w)X−(w) (9)

ψ±(z)X+(w) = z±q + w

z± + wq
X+(w)ψ±(z) (10)

ψ±(z)X−(w) = z∓ + wq

z∓q + w
X−(w)ψ±(z) (11)

ψ±(z)ψ±(w) = ψ±(w)ψ±(z) (12)

ψ+(z)ψ−(w) = z+q + w−
z+ + w−q

z− + w+q

z−q + w+
ψ−(w)ψ+(z) (13)

{X+(z),X−(w)} = 1

(q − q−1)zw

[
δ

(
w

z
γ

)
ψ+(z−) − δ

(
w

z
γ−1

)
ψ−(w−)

]
(14)

where4 z± = zγ±1/2. Notice that the δ functions appearing in (7) and (14) are supported
differently, the former at 0 (i.e. the standard Dirac δ function) and the latter at 1 (δ(z) ≡ ∑

n∈Z z
n

as a formal power series). We also denote the subalgebras of Uq(osp(2|2)(2)) generated
respectively by X+(z) and X−(z) by N±[Uq(osp(2|2)(2))].

The following two propositions justify the similarities between the two algebras
A h̄,η(osp(2|2)(2)) and Uq(osp(2|2)(2)): first,

Proposition 2.2. There are algebra homomorphisms ρ+ : N+[A h̄,η(osp(2|2)(2))] →
N+[Uq(osp(2|2)(2))], ρ− : N−[A h̄,η(osp(2|2)(2))] → N−[Uq ′(osp(2|2)(2))], where under
ρ± the parameters behave as

ρ+(e2πηu) = z

ρ+(e2π iηh̄) = q

and

ρ−(e2πη′u) = z

ρ−(e2π iη′h̄) = q ′

respectively.

Recalling that η and η′ are different only when c = 0, we also have

Proposition 2.3. There is an algebra homomorphism between A h̄,η(osp(2|2)(2)) at c = 0 and
Uq(osp(2|2)(2)) at γ = 1:

E : A h̄,η(osp(2|2)(2)) → Uq(osp(2|2)(2))
E(u) �−→

√
2zX+(z)

F (u) �−→
√

2zX−(z)
2π

h̄
H±(u) �−→ 1

q − q−1
ψ±(z)

where z = e2πηh̄u, q = e2π iηh̄.

4 In the original presentation ofUq(osp(2|2)(2)) in [9], the element γ was written as qc . However, to avoid confusion
with the central element c of the algebra A h̄,η(osp(2|2)(2)), we intentionally rename it γ , as is usual in ordinary
quantum affine algebras.
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Proposition 2.2 indicates that the algebra A h̄,η(osp(2|2)(2)) is actually an interpolation
between (Borel subalgebras of) two standard quantum affine algebras Uq(osp(2|2)(2)) and
Uq ′(osp(2|2)(2)) with different deformation parameters, while proposition 2.3 further states
that, at c = 0, the algebra A h̄,η(osp(2|2)(2)) degenerates into Uq(osp(2|2)(2)) at γ = 1.

2.2. Co-structure

As expected, this algebra possesses the structure of an infinite Hopf family of (super)algebras,
whose definition can be found in [10] (see also [4, 5]). In fact, if we denote A n =
A h̄,η(n) (osp(2|2)(2))cn , where η(n) is defined iteratively via 1

η(n+1) − 1
η(n)

= h̄cn starting from

η(1) = η and taking cn ∈ Z\Z−, we can define the following co-structures over the family of
algebras {A n, n ∈ Z}:

• the co-multiplications !±
n (algebra homomorphisms !+

n : A n → A n ⊗ A n+1, !−
n :

A n → A n−1 ⊗ A n):

!+
ncn = cn + cn+1

!−
n cn = cn−1 + cn

!+
nH

+(u; η(n)) = H +

(
u +

ih̄cn+1

4
; η(n)

)
⊗ H +

(
u − ih̄cn

4
; η(n+1)

)
!−

n H
+(u; η(n)) = H +

(
u +

ih̄cn
4

; η(n−1)

)
⊗ H +

(
u − ih̄cn−1

4
; η(n)

)
!+

nH
−(u; η(n)) = H−

(
u − ih̄cn+1

4
; η(n)

)
⊗ H−

(
u +

ih̄cn
4

; η(n+1)

)
!−

n H
−(u; η(n)) = H−

(
u − ih̄cn

4
; η(n−1)

)
⊗ H−

(
u +

ih̄cn−1

4
; η(n)

)
!+

nE(u; η(n)) = E(u; η(n)) ⊗ 1 + H−
(
u +

ih̄cn
4

; η(n)
)

⊗ E

(
u +

ih̄cn
2

; η(n+1)

)
!−

n E(u; η(n)) = E(u; η(n−1)) ⊗ 1 + H−
(
u +

ih̄cn−1

4
; η(n−1)

)
⊗ E

(
u +

ih̄cn−1

2
; η(n)

)
!+

nF (u; η(n)) = 1 ⊗ F(u; η(n+1)) + F

(
u +

ih̄cn+1

2
; η(n)

)
⊗ H +

(
u +

ih̄cn+1

4
; η(n+1)

)
!−

n F (u; η(n)) = 1 ⊗ F(u; η(n)) + F

(
u +

ih̄cn
2

; η(n−1)

)
⊗ H +

(
u +

ih̄cn
4

; η(n)
)

• the co-units εn (algebra homomorphism εn : A n → C):

εn(cn) = 0

εn(1n) = 1

εn(H
±
i (u; η(n))) = 1

εn(Ei(u; η(n))) = 0

εn(Fi(u; η(n))) = 0

• the antipodes S±
n (algebra anti-homomorphisms S±

n : A n → A n±1):

S±
n (cn) = −cn±1

S±
n (H

±(u; η(n))) = [H±(u; η(n±1))]−1

S±
n (E(u; η(n))) = −H−

(
u − ih̄cn±1

4
; η(n±1)

)−1

E

(
u − ih̄cn±1

2
; η(n±1)

)
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S±
n (F (u; η(n))) = −F

(
u − ih̄cn±1

2
; η(n±1)

)
H +

(
u − ih̄cn±1

4
; η(n±1)

)−1

where ⊗ stands for the direct super product defined by

(A ⊗ B)(C ⊗ D) = (−1)π [B]π [C]AB ⊗ CD

for homogeneous elements A,B,C,D. It is a trivial (but tedious) exercise to check that these
structures satisfy all the defining axioms of an infinite Hopf family of (super)algebras,

• (εn ⊗ idn+1) ◦ !+
n = τ +

n , (idn−1 ⊗ εn) ◦ !−
n = τ−

n

• mn+1 ◦ (S+
n ⊗ idn+1) ◦ !+

n = εn+1 ◦ τ +
n , mn−1 ◦ (idn−1 ⊗ S−

n ) ◦ !−
n = εn−1 ◦ τ−

n

• (!−
n ⊗ idn+1) ◦ !+

n = (idn−1 ⊗ !+
n) ◦ !−

n

where mn is the (super)multiplication for A n and τ±
n are algebra shift morphisms τ±

n : A n →
A n±1 which obey τ−

n+1τ
+
n = idn = τ +

n−1τ
−
n .

The operations !±
n are related to each other by the shift morphisms:

!−
n = (τ−

n ⊗ τ−
n+1) ◦ !+

n

!+
n = (τ +

n−1 ⊗ τ +
n ) ◦ !−

n .

Thus the easily observed co-commutativity between the two co-multiplications

(!−
n ⊗ idn+1) ◦ !+

n = (idn−1 ⊗ !+
n) ◦ !−

n

can be rewritten in terms of only one of the two co-multiplications, and turns out to become a
statement of the non-co-associativity of the co-multiplications:

[((τ−
n ⊗ τ−

n+1) ◦ !+
n) ⊗ idn+1] ◦ !+

n = (idn−1 ⊗ !+
n) ◦ ((τ−

n ⊗ τ−
n+1) ◦ !+

n)

(!−
n ⊗ idn+1) ◦ ((τ +

n−1 ⊗ τ +
n ) ◦ !−

n ) = [idn−1 ⊗ ((τ +
n−1 ⊗ τ +

n ) ◦ !−
n )] ◦ !−

n .

Notice that these twisted co-associativity conditions are different from that of the Drinfeld
twists. However, the effects of these two different kinds of twists are the same: they all allow
one to construct fused (tensor product) representations for the algebras under investigation,
although the co-structures are not co-associative.

Now recall that definition 2.1 defines the algebra A h̄,η(osp(2|2)(2)) only as a formal
algebra, in the sense that all currents thus defined are actually only distributions. To assign
precise meaning to the algebra A h̄,η(osp(2|2)(2)) we need to specify the actual generators and
relations, and this can be done only separately for two distinct cases c = 0 and c = 0 (as
in the case of A h̄,η(ŝl2) [7] and A h̄,η(ĝ) [4]). For details, the reader is directed to Khoroshkin
et al [7] in the ŝl2 case. The present case is in complete analogy.

3. Representation theory

3.1. Case c = 0

Recall that, for c = 0, there is an algebra homomorphism between the algebras
A h̄,η(osp(2|2)(2)) and Uq(osp(2|2)(2)) for q = e2π iηh̄. Thus the evaluation representation
of Uq(osp(2|2)(2)) presented in [9] can be extended into an evaluation representation of
A h̄,η(osp(2|2)(2)) in terms of the evaluation homomorphism E . This evaluation representation
justifies the relationship between the algebra A h̄,η(osp(2|2)(2)) and the root system of type
osp(2|2)(2).
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3.2. Case c = 1 and structure of the Fock space

As usual, the tool we need to construct a representation of A h̄,η(osp(2|2)(2)) at c = 1 is the
free boson realization. Throughout this subsection we have 1/η′ = 1/η + h̄.

Define the Heisenberg algebras Hα , Hβ respectively by

[α(λ), α(µ)] = A(λ)δ(λ + µ)

[β(λ), β(µ)] = B(λ)δ(λ + µ)

[α(λ), β(µ)] = 0 (λ = µ)

where A(λ) and B(λ) are given as

A(λ) = λ

4 cosh h̄λ
2 + (csch λ

2η − csch λ
2η′ ) sinh h̄λ + 2

B(λ) =
λ((1 + csch λ

2η sinh h̄λ)(1 − csch λ
2η′ sinh h̄λ) − 4 cosh2 h̄λ

2 )

4 cosh h̄λ
2 + (csch λ

2η − csch λ
2η′ ) sinh h̄λ + 2

both of which are antisymmetric as λ → −λ and regular as λ → 0. In fact, we can easily
check that

A(λ) = −A(−λ)

B(λ) = −B(−λ)

and

A(λ) ∼ λ

2(η − η′)h̄ + 6
+ O(λ3)

B(λ) ∼ [(1 + 2h̄η)(1 − 2h̄η′) − 4]λ

2(η − η′)h̄ + 6
+ O(λ3)

indicating that the Heisenberg algebras Hα , Hβ are well defined even at λ = 0. The conjugates
of α(0) and β(0) have to be introduced separately, however, as follows. Let Qα = α(0),
Qβ = β(0) and their conjugate operators Pα , Pβ be defined by the following relations:

[Pα,Qα] = 1

[Pβ,Qβ] = 1

[Pα,Qβ] = [Pβ,Qα] = 0.

Now denoting

Xa(λ) = 1

h̄λ

(
csch

λ

2η
sinh h̄λ + 2 cosh

h̄λ

2
+ 1

)
Xb(λ) = 1

h̄λ

(
csch

λ

2η′ sinh h̄λ − 2 cosh
h̄λ

2
− 1

)
Ya(λ) = Yb(λ) = 1

h̄λ

we can define

a(λ) = Xa(λ)α(λ) + Ya(λ)β(λ)

b(λ) = Xb(λ)α(λ) + Yb(λ)β(λ) (λ = µ)

so that the corresponding commutation relations are

[a(λ), a(µ)] = − 1

h̄2λ

(
1 +

sinh h̄λ

sinh λ
2η

)
δ(λ + µ) (15)
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[b(λ), b(µ)] = − 1

h̄2λ

(
1 − sinh h̄λ

sinh λ
2η′

)
δ(λ + µ) (16)

[a(λ), b(µ)] = [b(λ), a(µ)] = 2

h̄2λ
cosh

h̄λ

2
δ(λ + µ) (λ = µ). (17)

These commutation relations are crucial for the construction of the free boson representation
for the algebra A h̄,η(osp(2|2)(2)) and hence we give this algebra a short name for reference:
H[a, b]. Recall that we are dealing with generic deformation parameters; we do not consider
the specific values of the parameters at which the above bosonic algebra becomes ill-defined
(these include the points at which 1

2η is a rational multiple of h̄).
Before going into the details of the representation theory, we have to specify the structure

of the Fock space on which the free bosonic algebra H[a, b] acts. Actually, there are infinitely
many ways to realize the bosonic algebra H[a, b] in terms of two commuting sets of Heisenberg
algebras, and what we outlined above is only one of infinitely many choices.

Denoting respectively by Fα and Fβ the Fock spaces for the Heisenberg algebras Hα and
Hβ , we see that the bosonic algebra H[a, b] can be realized in a proper subspace F[a, b] of
Fα ⊗ Fβ by actions of the form

Fα ⊗ Fβ ⊃ F[a, b] � |vf1,...,fn,g1,...,gm〉 =
∫ −ε

−∞
dλ1 f (λ1)a(λ1) · · ·

∫ −ε

−∞
dλn f (λn)a(λn)

×
∫ −ε

−∞
dµ1 g(µ1)b(µ1) · · ·

∫ −ε

−∞
dµm g(µm)b(µm)|0〉α ⊗ |0〉β

λ1, . . . , λn;µ1, . . . , µm < 0 ∀n,m ∈ Z 0 < ε → 0+.

Notice that the ordering of a and b in the above expression is irrelevant, because all values of
λ1, . . . , λn and µ1, . . . , µm are negative. The Fock space thus described gives the left action
(or action onto the right) of the algebra H[a, b]. The Fock space which provides the right
action (or action onto the left) can be specified as the conjugation of the above, i.e. F∗[a, b].

It remains to specify the correlation functions for operators acting on the Fock spaces
F[a, b] and F∗[a, b] or, using more precise mathematical terminology, the pairing F[a, b] ⊗
F∗[a, b] → C. This is given by the following three steps. First, we fix the normalization for
the vacuum vectors as follows:

(α〈0| ⊗β 〈0|)(|0〉α ⊗ |0〉β) = 1.

Next, for any two vectors

〈vfi | =α 〈0| ⊗β 〈0|
∫ +∞

ε

dλ fi(λ)Xi(λ)

|vgj 〉 =
∫ −ε

−∞
dµgj (µ)Xj (µ)|0〉α ⊗ |0〉β

where Xi,j (λ) are operators acting on the Fock spaces F[a, b] and F∗[a, b] satisfying

Xi,j (λ)|0〉α ⊗ |0〉β = 0 =α 〈0| ⊗β 〈0|Xi,j (−λ) (λ > 0)

[Xi(λ),Xj (µ)] = xij (λ)δ(λ + µ) (xij (λ) regular at λ = 0)

with fi(λ) and gj (λ) both analytic in a small neighbourhood of λ = 0, except at λ = 0 where
they have simple poles, we define the inner product as follows:

〈vfi |vgj 〉 =
∫
C

dλ ln(−λ)

2π i
fi(λ)xij (λ)gj (−λ)

where C is an integration contour which goes from infinity to zero above the positive real λ
axis, surrounding the origin counterclockwise, and going to infinity again below the positive
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real λ axis. This particular kind of regularization has already been used in [4, 7]. Last, for
‘multi-particle’ states like 〈vfi1 ,...,fik | and |vgj1 ,...,gjk 〉, we apply the Wick theorem.

Having provided all the necessary tools for defining the free boson representation, we now
introduce the notation

ϕ(u) =
∫
λ =0

dλ eiλua(λ) (18)

φ(u) =
∫
λ=0

dλ eiλub(λ) (19)

where
∫
λ =0 dλ means the integration over the whole real λ axis except the point λ = 0, i.e.∫

λ =0
dλ = lim

ε→0+

(∫ −ε

−∞
dλ +

∫ +∞

ε

dλ

)
.

We then have

Proposition 3.1. The following expressions give a free boson realization of the algebra
A h̄,η(osp(2|2)(2)) at c = 1:

E(u) = eγE−ln η : exp

[
iπ

2

(
1

pα

Pα +
1

pβ

Pβ

)
+ (pαQα + pβQβ)

]
exp h̄[ϕ(u)] :

F(u) = eγE−ln η : exp

[
iπ

2

(
1

pα

Pα − 1

pβ

Pβ

)
+ (pαQα + pβQβ)

]
exp h̄[φ(u)]

H±(u) =: exp

[
iπ

(
1

pα

Pα

)
+ 2(pαQα + pβQβ)

]
exp h̄[ϕ(u ± ih̄/4) + φ(u ∓ ih̄/4)] :

where pα , pβ are two arbitrary nonzero constants and γE is the Euler constant γE =
0.577 215 66 · · ·.

The proof is by straightforward calculation using the Fock space conventions above. The
following formulae play crucial roles:∫

C

dλ ln(−λ)

2π iλ

e−xλ

1 − e−λ/η
= ln>(ηx) +

(
ηx − 1

2

)
(γE − ln η) − 1

2
ln(2π)

>

(
1

2
− x

)
>

(
1

2
+ x

)
= π

cosπx
.

3.3. Free boson representations of Uq(osp(2|2)(2))
In this subsection we carry out the same procedure as in the last subsection without assuming
the relation 1/η′ = 1/η + h̄. As we shall see, this yields a representation of the algebra
Uq(osp(2|2)(2)) at γ = q1/2. Below we give some of the details.

We introduce two Heisenberg algebras H̃α , H̃β , not to be confused with those of the last
subsection, defined respectively by

[α(λ), α(µ)] = A(λ)δ(λ + µ)

[β(λ), β(µ)] = B(λ)δ(λ + µ)

[α(λ), β(µ)] = 0 (λ = µ)

where A(λ) and B(λ) are given by

A(λ) = λ

4 cosh h̄λ
2 + 2

B(λ) = −
λ(csch2 λ

2η sinh2 h̄λ + 2 cosh h̄λ + 1)

4 cosh h̄λ
2 + 2

.
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The zero mode operators remain as in the last subsection:

[Pα,Qα] = 1

[Pβ,Qβ] = 1

[Pα,Qβ] = [Pβ,Qα] = 0.

Let

Xa(λ) = 1

λ

(
csch

λ

2η
sinh h̄λ + 2 cosh

h̄λ

2
+ 1

)
Xb(λ) = 1

λ

(
csch

λ

2η
sinh h̄λ − 2 cosh

h̄λ

2
− 1

)
Ya(λ) = Yb(λ) = 1

λ

and define

a(λ) = Xa(λ)α(λ) + Ya(λ)β(λ)

b(λ) = Xb(λ)α(λ) + Yb(λ)β(λ) (λ = µ)

so that the corresponding commutation relations are

[a(λ), a(µ)] = −1

λ

(
1 +

sinh h̄λ

sinh λ
2η

)
δ(λ + µ) (20)

[b(λ), b(µ)] = −1

λ

(
1 − sinh h̄λ

sinh λ
2η

)
δ(λ + µ) (21)

[a(λ), b(µ)] = [b(λ), a(µ)] = 2

λ
cosh

h̄λ

2
δ(λ + µ) (λ = µ). (22)

We introduce the free bosonic fields ϕ(u) and φ(u) as in (19) but using the Heisenberg algebras
described in this subsection.

Proposition 3.2. The following expressions give a free boson realization of the algebra
Uq(osp(2|2)(2)) currents (8)–(14) at γ = q1/2:

X+(z) = eγE−ln η 1√
2z

: exp

[
iπ

2

(
1

pα

Pα +
1

pβ

Pβ

)
+ (pαQα + pβQβ)

]
× exp

[
ϕ

(
ln z

2πη

)]
:

X−(z) = eγE−ln η 1√
2z

: exp

[
iπ

2

(
1

pα

Pα − 1

pβ

Pβ

)
+ (pαQα + pβQβ)

]
× exp

[
φ

(
ln z

2πη

)]
:

ψ±(z) = (2π)2iη(q − q−1)

ln q
: exp

[
iπ

(
1

pα

Pα

)
+ 2(pαQα + pβQβ)

]
× exp

[
ϕ

(
ln zq±1/4

2πη

)
+ φ

(
ln zq∓1/4

2πη

)]
:

where pα , pβ are two arbitrary nonzero constants, γE is the Euler constant, and q and z are
related to the parameters η and h̄ via q = e2π iηh̄ and z = e2πηu.
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Remark 3.3. We can set the parameter η in the above free boson representation to any fixed
value without changing the representation itself. In this sense, the parameter η can be thought
of as redundant. Indeed, the algebraUq(osp(2|2)(2)) contains only one deformation parameter,
and its representation must necessarily contain no extra parameters.

Remark 3.4. From footnote 4, we see that the value of γ = q1/2 corresponds to c = 1/2
in [9]. Thus the free boson representation given in proposition 3.2 is somehow not the most
interesting one—remember that, for usual affine Lie (super)algebras, only representations at
integer values of c have received attention, because only these representations are known to
be unitary.

Remark 3.5. In [9], a free boson representation of the Uq(osp(2|2)(2)) currents (8)–(14) at
γ = q (i.e. c = 1) was given. However, that representation does not have a well-defined
limit as q → 1 and hence the authors of that paper called their representation a ‘nonclassical’
one. One can verify that our representation does have a well-defined limit at this value of
deformation parameter.

Although the representation of Uq(osp(2|2)(2)) at γ = q1/2 is not of the most interesting
class, we could, however, use the same method to construct ‘interesting’ representations. Now,
instead of (20)–(22), we introduce the following set of bosonic algebras:

[an, am] = −1

n
(1 + (−q)−n)δn+m,0

[bn, bm] = −1

n
(1 − (−q)−n)δn+m,0

[an, bm] = [bn, am] = 1

n
(qn + q−n)δn+m,0

together with the zero mode operators:

[Pa,Qa] = 1

[Pb,Qb] = 1

[Pa,Qb] = [Pb,Qa] = 0.

These bosonic commutation relations can also be realized in the tensor product of Fock spaces
of two commuting sets of Heisenberg algebras, though we omit this here.

Defining

ϕ(z) =
∑
n =0

anz
−n + Pa ln z + 2Qa + 2Qb

φ(z) =
∑
n=0

bnz
−n − (Pa + Pb)(ln z + iπ/2) − 2(Qa − Qb)

we can easily prove

Proposition 3.6. The following bosonic expressions give a free boson representation of
Uq(osp(2|2)(2)) currents at γ = q:

E(z) =: expϕ(z) :

F(z) =: expφ(z) :

H±(z) =: E(zq±1/2)F (zq∓1/2) : .

Again, this free boson representation is well defined as q → 1.



On the algebra A h̄,η(osp(2|2)(2)) and free boson representations 6323

4. Concluding remarks

The result in this paper provides an example of a two-parameter deformed quantum current
algebra with the structure of an infinite Hopf family of (super)algebras and associated with a
non-simply laced and twisted root system. To the authors’ knowledge, this is the first example
of this kind and hence a useful hint at the final classification of all such algebras.

Recent work on infinite Hopf families of (super)algebras has shown that very rich structures
are incorporated within them. Though the relationship between such algebra families and the
so-called quasi-Hopf algebras of Drinfeld [1] is not yet understood, positive progress is being
made towards their Yang–Baxter realization [8], providing for the first time the possibility of
applying these algebraic structures directly to solvable/integrable models in two dimensions
(that is, without being forced to use Drinfeld’s quasi-Hopf structure). More detailed work in
this direction is currently under way.
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